
Report
Dopamine neurons evalua
te natural fluctuations in
performance quality
Graphical abstract
Highlights
d Songbird dopamine activity correlates with natural song

fluctuations

d The form and timing of the dopamine activity is consistent

with song evaluation
Duffy et al., 2022, Cell Reports 38, 110574
March 29, 2022 ª 2022 The Authors.
https://doi.org/10.1016/j.celrep.2022.110574
Authors

Alison Duffy, Kenneth W. Latimer,

Jesse H. Goldberg, Adrienne L. Fairhall,

Vikram Gadagkar

Correspondence
fairhall@uw.edu (A.L.F.),
vikram.gadagkar@columbia.edu (V.G.)

In brief

Learning and producing skilled behavior

requires an internal measure of

performance. Duffy et al. examine

dopamine neurons’ relationship to natural

song in singing birds. Spontaneous

dopamine activity correlates with song

fluctuations in a manner consistent with

evaluation of natural behavioral

variations, independent of external

perturbations, cues, or rewards.
ll

mailto:fairhall@uw.edu
mailto:vikram.gadagkar@columbia.edu
https://doi.org/10.1016/j.celrep.2022.110574
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2022.110574&domain=pdf


OPEN ACCESS

ll
Report

Dopamine neurons evaluate natural
fluctuations in performance quality
Alison Duffy,1,2 Kenneth W. Latimer,1,3 Jesse H. Goldberg,4 Adrienne L. Fairhall,1,2,* and Vikram Gadagkar5,6,*
1Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
2Computational Neuroscience Center, University of Washington, Seattle, WA 98195, USA
3Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
4Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
5Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
6Lead contact

*Correspondence: fairhall@uw.edu (A.L.F.), vikram.gadagkar@columbia.edu (V.G.)

https://doi.org/10.1016/j.celrep.2022.110574
SUMMARY
Manymotor skills are learnedby comparing ongoing behavior to internal performancebenchmarks.Dopamine
neurons encode performance error in behavioral paradigms where error is externally induced, but it remains
unknownwhetherdopaminealsosignals thequalityof naturalperformancefluctuations.Here,we recorddopa-
mine neurons in singing birds and examine howspontaneous dopamine spiking activity correlateswith natural
fluctuations in ongoing song. Antidromically identified basal ganglia-projecting dopamine neurons correlate
with recent, and not future, song variations, consistent with a role in evaluation, not production. Furthermore,
maximal dopamine spiking occurs at a single vocal target, consistent with either activelymaintaining the exist-
ing song or shifting the song to a nearby form. These data show that spontaneous dopamine spiking can eval-
uate natural behavioral fluctuations unperturbed by experimental events such as cues or rewards.
INTRODUCTION

Dopamine (DA) is associated with fluctuations in future move-

ments aswell as the outcomes of past ones. During spontaneous

behavior, DA activity can be phasically activated before a

movement (da Silva et al., 2018; Hamilos et al., 2020), or can

ramp as an animal approaches reward (Hamid et al., 2016;

Howe et al., 2013). DA neurons can also signal a reward predic-

tion error (RPE) during reward seeking, where phasic signals

represent the value of a current outcome relative to previous out-

comes (Schultz et al., 1997). It remains poorly understood how

spontaneous DA activity relates to natural fluctuations in

behavior that are independent of experimentally induced re-

wards or perturbations.

Zebra finches provide a tractable model to study the role of DA

in natural behavior. First, they sing with a significant amount of

trial-to-trial variability, but the overall stereotypy of the song al-

lows renditions to be accurately compared. Second, they have

a discrete neural circuit (the song system) that includes a DA-

basal ganglia (BG) loop (Figures 1A and 1B) that is necessary

for song learning and maintenance (Brainard and Doupe, 2000;

Hisey et al., 2018; Hoffmann et al., 2016; Xiao et al., 2018). Third,

BG projecting DA neurons signal performance prediction error

(PPE) during singing: they exhibit pauses following worse-than-

predicted outcomes caused by distorted auditory feedback

(DAF), and they exhibit phasic bursts following better-than-

predicted outcomes when predicted distortions do not occur

(Figures 1A–1D) (Gadagkar et al., 2016). Yet one limitation of

this study was that song quality was controlled with an external
This is an open access article under the CC BY-N
sound (DAF; Figure 1C), so it remains unclear if the DA system is

simply using song timing to build expectations about an external

event (DAF), or if it also evaluates the quality of natural fluctua-

tions (Figure 1E), which would be necessary for natural song

learning. Furthermore, this experimental paradigm did not test

if DA activity was associated with upcoming syllables, consistent

with a premotor signal.

To test DA’s role in natural behavior, we recorded from DA

neurons in the ventral tegmental area (VTA) (Figure 1B), and

examined how spiking activity correlated with natural song fluc-

tuations (Figure 1E). First, if DA activity following externally dis-

torted and undistorted song (Figure 1D) truly reflects a function

of the DA system in performance evaluation, then DA activity

should correlate with recent song fluctuations (Figure 1E). Sec-

ond, DAF-associated error signaling was previously only

observed in a small subclass of ‘‘VTAerror’’ neurons, most of

which projected to Area X, the BG nucleus of the song system.

‘‘VTAother’’ neurons were defined by the absence of an error

signal during singing. We hypothesize that the VTAerror popula-

tion will carry a performance error signal for natural song (Fig-

ure 1E), while the VTAother population will not. Thus, we ask in

this analysis: Do VTA neuron activity patterns relate to fluctua-

tions in natural song? If so, what is the structure of these relation-

ships, and do they relate to a performance evaluation framework,

a premotor framework, or both?

To answer these questions, we first parameterized natural

song into a low-dimensional set of time-varying song features.

We then agnostically fit the relationship between rendition-to-

rendition variations in song features and spike counts at local
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Figure 1. Experimental identification of performance error in VTA DA neurons in singing birds

(A) Evaluation of auditory feedback during singing is thought to produce an error signal for song learning (reproduced from Gadagkar et al., 2016, with the

permission of AAAS).

(B) Basal ganglia (Area X)-projecting DA neurons from VTA were antidromically identified (reproduced from Gadagkar et al., 2016, with the permission of AAAS).

(C) Example of DAF. The target syllable was randomly distorted across motifs. All other syllables (labeled ‘‘Natural’’) were left undisturbed (reproduced from

Gadagkar et al., 2016, with the permission of AAAS).

(D) (Left, top to bottom) Example spectrograms of renditions with the target syllable undistorted (enclosed in blue box) and distorted (enclosed in red box); rate

histogram of distorted and undistorted renditions (the horizontal bar indicates significant deviations from baseline [p < 0.05, z test; see STAR Methods]); (Right)

Normalized response to target syllable in VTAerror and VTAother neurons (mean ± SEM; see STAR Methods) (reproduced from Gadagkar et al., 2016, with the

permission of AAAS).

(E) The experimental results suggest a hypothesis that fluctuations in natural song should also result in VTAerror responses.
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time steps in song across a range of song segment-spike win-

dow latencies and identified if and when song feature variations

predicted spike counts. Finally, we characterized both the timing

and the form of these predictive fits. We find that the activity of

the VTAerror, but not the VTAother, neuronal population encodes

fluctuations in natural song in a manner consistent with a perfor-

mance evaluation signal. These results show that basal ganglia-

projecting DA neurons may provide continuous evaluation of

natural motor performance independent of external rewards or

perturbations.

RESULTS

We performed our analysis on n = 22 VTAerror neurons and n = 23

VTAother neurons during uninterrupted, natural portions of
2 Cell Reports 38, 110574, March 29, 2022
singing. Regions of song selected for DAF were excluded

from analysis. Classifications of neuron type were based on re-

sponses to the DAF paradigm described above. Neurons were

recorded on single days during approximately 20–80 consecu-

tive renditions of song.

AGaussian process model approach reveals song-spike
relationships
We sought to identify how VTA spiking varied with natural fluctu-

ations in song syllables. To identify relationships between natural

song fluctuations and VTA spiking, we chose an eight-dimen-

sional, time-varying representation of song based on established

song parameterizations, which have been shown in previous

studies to relate to neural activity, vary over song development,

and drive adult learning in DAF paradigms (Figure 2A; see STAR



A

C

D

B

Figure 2. A Gaussian process model approach reveals song-spike relationships

(A) Natural song was parameterized into eight time-varying song features.

(B) Schematic of fitting song fluctuations to spike counts within specific time windows. Local feature averages (one feature shown for illustration) were used to

predict local spike counts using a GP model.

(C) Schematic of fitting a single, multivariate model using multiple song features. The multi-dimensional model takes a weighted average of the model predictions

from every combination of eight song features (two shown here for illustration). Themiddle column shows the three feature combinations for two example features

(t-b): pitch only; pitch and entropy; entropy only. The model’s goodness of fit was quantified by the cross-validated r2 calculated from the final, weighted average

model (see STAR Methods). The cyan dot indicates an example held out data point in the cross-validation procedure.

(legend continued on next page)
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Methods) (Andalman and Fee, 2009; Deregnaucourt et al., 2004;

Kao et al., 2005; Leblois et al., 2010; Ravbar et al., 2012; Sober

and Brainard, 2009; Tchernichovski et al., 2000; Tumer and Brai-

nard, 2007; Woolley and Kao, 2014). For each neuron, we iden-

tified song syllables and binned both song feature values and

spike counts in sliding windows across each syllable to search

for relationships between song fluctuations and spike counts

at different latencies (song window width = 35 ms; spike window

width = 100 ms) (Figure 2B; see STAR Methods). We combined

all eight song features and binned spike counts into a single

multi-dimensional Gaussian process (GP) regression model

(two features shown for illustration) to quantify whether song

feature fluctuations predicted spike counts (Figures 2C, S1,

and S2; see STAR Methods). This strategy flexibly identifies

the most relevant dimensions of song variation within a single

model. Specifically, we computed an r2 value for each model

fit using leave-one-out cross-validation to assess how well vari-

ations in song features predicted spike counts (Figure 2C).

Values of r2 > 0 indicate that song feature variations across ren-

ditions can predict spike counts; the larger the r2 value, the more

predictive the song-spike relationship in themodel. Finally, we fit

the full model to many song-spike latencies and thus built a ma-

trix of r2 values for each neuron’s response to song fluctuations,

with each r2 value in the matrix representing one full model fit

(one feature shown for illustration) between a song window-

spike window pair (Figure 2D).

Timing of song-spike relationships for VTAerror neurons
is consistent with an evaluative process
Using the GP model approach described above, we asked if sig-

nificant relationships between natural song fluctuations and VTA

neuron spiking exist and, if so, at what song-spike latencies

they occur. If VTA spiking is predictive of upcoming syllable fluc-

tuations in a premotor fashion, then significant relationships

would be observed at negative lags. Alternatively, if VTA spiking

is playing an evaluative function, then variations in spike counts

should follow variations in syllable acoustic structure, and rela-

tionships should be observed at positive lags. Based on past

work (Gadagkar et al., 2016), an evaluation signal is predicted

to occur at a positive lag of �50 ms with a duration range of

0–150 ms. Figure 3A shows an example VTAerror neuron’s song-

spike relationship (the r2 matrix) for a single syllable. The y axis

is the midpoint of each song window aligned to syllable onset

(t = 0). The x axis is the latency, defined as the time between

the song window midpoint and the spike window midpoint.

Colored pixels in the r2 matrix indicate that song feature fluctua-

tions predict spike counts (r2 > 0); grayscale pixels indicate that

song feature fluctuations do not predict spike counts (r2 % 0).

The pink box indicates the song-spike latencies (0–150ms) where

we expect to see evaluation-like relationships based on the DAF

experimental results (Figure 1D). We assessed the significance

of finding predictive fits by shuffling entire spike trains relative to

song renditions and refitting our model across all latencies and
(D) Schematic of modeling technique shown in (B and C) now extended across a

values. The top panels show a sliding window along the song (single feature sho

across renditions in a raster plot. Each entry in the r2 matrix (middle panels) rep

connected with red lines.
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song windows (Figure 3A, bottom and S3; see STAR Methods).

This population method of shuffling the data preserves the under-

lying temporal correlation structure of song and spiking while

randomizing the song-spike relationship and allowed us to assess

the significance of the entire set ofmodel fits and account for mul-

tiple comparisons (see STARMethods). The bottommatrix in Fig-

ure 3A shows the r2 values from one such randomized shuffle of

the same neuron’s activity patterns. Positive r2 values were found

to be less frequent in the shuffled data (one-sided bootstrap test:

p < 0.01; see STAR Methods).

We then analyzed the temporal relationship between song fea-

tures and spiking by plotting the latency distribution for all song

window-spike window pairs within the r2 matrix in which song

features predicted spike counts (r2 > 0) (Figure 3B). The latencies

of the predictive fits were clustered within the expected error

evaluation range (0–150 ms) (Figure 3B). In Figure 3B, the blue

line indicates the song-spike latency distribution for which song

fluctuations predict spike counts (r2 > 0) while the black line and

gray shading are themean and standard deviation of the same la-

tency distributions across all randomized population shuffles.

Figure 3C shows the result of the same analysis performed

across all the VTAerror neurons in our dataset (n = 22). The true

data showed a large peak within the expected PPE latency range

(3.74 standard deviations from the mean, one-sided bootstrap

test: p < 0.01; see STAR Methods). We found that song fluctua-

tions are most predictive of spike counts 0–100 ms after the

song fluctuation occurs, consistent with a PPE-like signal based

on our previous DAF experiments (Figure 1D). In addition, across

the population of VTAerror neurons there were significantly more

predictive fits within the PPE latency window than expected by

chance (one-sided bootstrap test: p < 0.01; see STARMethods).

Thus, the timing and frequency of the predictive song-spike rela-

tionships was remarkably consistent with a PPE-like response to

natural song variations.

We next performed the identical analysis on a population of

VTAother neurons (n = 23), which did not show an error-like

response in previous DAF experiments (Figure 1D). The number

of predictive song-spike relationships from this population was

also significantly larger than expected by chance (one-sided

bootstrap test, p < 0.01; see STAR Methods). However, unlike

the VTAerror neurons, the predictive relationships from this popu-

lation did not cluster within the PPE latency range, nor did the

variance of the distribution significantly deviate from the random-

ized latency distributions (one-sided bootstrap test: p = 0.21; Fig-

ure 3D; see STAR Methods). Thus, consistent with results from

the DAF experiments (Figure 1D), only the responses of VTAerror,

and not the non-error responsive VTAother, neuron populations

were predicted by natural song fluctuations within the expected

PPE latency range with significantly increased frequency. The

same neurons that exhibited error responses to the DAF sound

exhibited significant relationships with natural syllable fluctua-

tions. Remarkably, both the DAF-induced error and the natural

fluctuations were at a similar latency with respect to song.
range of song windows and song-spike latencies, thus building a matrix of r2

wn for illustration). The bottom panels show the time-aligned spiking activity

resents the fit between one song window and one spike window, shown here
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Figure 3. Timing of song-spike relationships for VTAerror neurons suggests an evaluative process

(A) Spectrogram of example syllable (top left). Heatmap of r2 values for fitted relationships between local song feature averages and binned spike counts (top

right). r2 > 0 indicates a predictive relationship. The pink box indicates the region where the latency matches the hypothesized response for a PPE, 0–150 ms. The

lower heatmap shows an r2 matrix for a shuffled version of the data (see STAR Methods).

(B) Histogram of latencies for predictive fits shown in (A).

(C) Latency distribution of predictive fits over all VTAerror neurons (n = 22) showed a significant peak in the number of responses in the expected PPE time window

(**p < 0.01; see STAR Methods).

(D) Same as in (C), but for the VTAother neuron population (n = 23).
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The form of the predominant song-spike relationship for
VTAerror neurons is consistent with song maintenance
The hypothesis that VTAerror neurons evaluate natural song fluc-

tuations led to further predictions about the forms of these song-

spike relationships. If a bird is trying to maintain the acoustic

structure of a syllable, then typical variations should be followed

by more spikes and rare, outlying syllable variations should be

followed by fewer spikes (Figure 4A, top left). Alternatively, if

the bird is trying to modify a syllable, e.g., increase its pitch,

then the relationship between syllable acoustic structure and

spike counts should be directional: spike counts should peak

at whatever shifted variant to which the bird aspires but is not

yet consistently producing (Figure 4A, right panels). We did not

expect PPE-like signals to have multiple maxima in a disruptive

fit: we assumed there is a single ‘‘best’’ version of the song at

each time step (Figure 4A, bottom left).

To test these possible outcomes, we characterized tuning

curve shapes of song-spike relationships. For this analysis, we

focused our attention on the subset of GP model fits that were

predictive (r2 > 0). Within this subset, we further selected sin-
gle-feature fits that were also predictive (r2 > 0 for the 1D feature

fit). We selected this subset of song-spike relationships because

we are interested only in the tuning curves that might carry infor-

mation about song. We re-fit all such song-spike relationships

with a generalized linear model (GLM) using both linear (l-GLM)

and linear and quadratic (q-GLM) features (Figure 4B; see

STAR Methods). We chose these models because the parame-

ters can be used to directly quantify aspects of the tuning curve

shapes. If the song-spike fit has a single peak, the spiking

response is stabilizing, and the quadratic coefficient of the

q-GLM is negative (Figure 4A, top left). If the song-spike fit has

two peaks, the spiking response is disruptive, and the quadratic

coefficient of the q-GLM is positive (Figure 4A, bottom left). If the

song-spike fit is monotonic, the spiking response is directional,

and the l-GLM (with only linear features) is the more appropriate

model (Figure 4A, right panels). Figure 4C shows examples of

predictive relationships between individual song features and

spike counts along with all model fits (GP, q-GLM, and l-GLM).

Each point on these plots represents the song feature value

and the spike count for a single rendition. Specific models
Cell Reports 38, 110574, March 29, 2022 5
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Figure 4. The form of the predominant song-spike relationship for VTAerror neurons is consistent with song maintenance

(A) The form of a song-spike relationship determines how the song is being reinforced. a and b correspond to the quadratic and linear coefficients in the GLM

shown in (B).

(B) Schematic of the nested GLM fitting process to quantify tuning curve shape for VTAerror neuron activity to natural song fluctuations.

(C) Example tuning curves obtained with the GP model, l-GLM, and q-GLM between single song features and spike counts for a selection of song-spike model

fits. Each point on each plot represents a single rendition. Pink shapes denote fit locationsmarked in (D). The r2 values for each example fit, l-r are: 0.13, 0.27, 0.13,

0.24. Additional, single-feature examples are given in Figure S4.

(D) The quadratic coefficient for q-GLM model fits to predictive song-spike relationships (defined within the GP model) as a function of DAIC values in the GLM

model comparison within the PPE latency range. Each point represents one q-GLM fit to a significant song feature-spike count pair. Pink shapes denote fits

shown in (C). The fraction of total data points in each quadrant about the [0,0] origin, clockwise from top left is: 0.24, 0.09, 0.32, 0.34. This plot zooms in on 99.5%

of data. Outlier points follow the same trend but increase scale and obscure visualization. All data are used in analysis.

(E) Fraction of stabilizing fits (negative quadratic coefficient) for all fits better described as quadratic than linear (DAIC > 0) compared with shuffled population

fractions. The blue point is the data and each value in the gray histogram is a single fraction from an independent population shuffle (see STARMethods). The data

showed a greater fraction of stabilizing fits than expected by chance (two-sided bootstrap test: p < 0.02; see STAR Methods). Inset: same distribution but now

shown for both the binned DAIC > 0 group and DAIC ˛½ � 2; 0�. The blue point is the true fraction and gray points are fractions from shuffled populations (see

STAR Methods).

6 Cell Reports 38, 110574, March 29, 2022
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were better fits for some distributions than others. For example,

in panel 4 (Figure 4C, fourth panel from left), the q-GLM pro-

duced the same model fit as the l-GLM because the quadratic

term added no improvement to the fit, whereas in panel 3 (Fig-

ure 4C, third panel from left), the quadratic term was necessary

to accurately follow the spiking response and thus the q-GLM re-

sulted in a better fit than the l-GLM.

When the spiking response is either stabilizing or disruptive,

the quadratic coefficient of the q-GLM distinguishes between

these two response types by indicating the direction of curva-

ture. We used the Akaike information criterion (DAIC) to compare

the relative success of the q-GLM and the l-GLM and, from this,

identified potential curvature in our data (see STAR Methods).

DAIC introduces a penalty for added parameters in a model to

account for possible overfitting. DAIC > 0 indicates that the

quadratic model outperforms the linear model, considering

both the likelihood of the model fit (the goodness of the fit) and

the complexity of the model used (the number of parameters in

the model). Because of this, we use DAIC > 0 as the threshold

for potential curvature in a song feature-spike count fit. The

larger the DAIC, the better the q-GLM fit relative to the l-GLM.

In Figure 4D, each point represents a fit to a single song feature

with an r2 > 0 within a multi-dimensional model fit with an r2 >

0 for the population of VTAerror neurons within the expected

PPE latency range. When we identified potential curvature in

the data (DAIC > 0), we found a significantly greater fraction

(0.78) of q-GLM fits with negative quadratic coefficients, which

indicates more stabilizing tuning curves than disruptive tuning

curves (Figures 4D and 4E; two-tailed bootstrap test, p < 0.02;

see STAR Methods). Furthermore, when DAIC > 0 the fraction

of stabilizing fits also increased (Figure 4E, inset). Thus, the pre-

dictive fits from the GP model had significantly more stabilizing

tuning curves than disruptive when their shape had identified

curvature, as we expect for a PPE signal with a single best

outcome (Figure 4E). This finding is consistent with our hypothe-

sis that a PPE signal should respond most strongly to a single

best performance of song. The DAIC measure also allowed us

to examine the fraction of tuning curves that are better fit by a

linear versus quadratic model. The VTAerror population did not

differ from chance in this fraction (fraction fits with DAIC > 0 =

0.43; two-tailed bootstrap test, p = 0.34; see STAR Methods),

consistent with a PPE signal with both directional and stabilizing

responses depending on the current level of song error.

DISCUSSION

Value judgments in the brain are necessary to drive appropriate

changes in behavior during learning. Using experimentally con-

strained tasks with external rewards, previous studies have

found that DA neurons in VTA can encode a key component of

value judgment: the mismatch between expected and actual

reward outcomes, the RPE (Schultz et al., 1997). However, ex-

tending these findings to natural behavior and intrinsic reward

has been a challenge. Here, we made use of a novel opportunity

to use an experimental context to partition songbird VTA neu-

rons into error and non-error classes and analyze their spiking re-

sponses in the context of a natural behavior (Gadagkar et al.,

2016). We compared natural song fluctuations at a local,
within-syllable scale with variations in spike counts of VTA neu-

rons. We developed a GP regression analysis to quantify the

non-stationary spiking response to variations in performance at

different points in song and with different temporal relationships

to song. We found evidence that VTA DA neurons’ activity pat-

terns correlate with variations in natural song in amanner consis-

tent with performance evaluation: both the timing and tuning

properties of the DA response was consistent with a PPE-like

response. This finding corroborates and extends complemen-

tary discoveries of RPE signals emerging from mammalian DA

neurons in VTA in experimentally imposed tasks. Previous

studies have shown the significance of midbrain DA in song

learning and maintenance in artificial manipulations of the circuit

and behavior: 6-OHDA lesions disrupt DAF-induced shifts in

pitch (Hoffmann et al., 2016). Optogenetic manipulations of

VTA inputs to Area X induce changes in song consistent with a

reinforcement paradigm (Hisey et al., 2018; Xiao et al., 2018).

While these experiments implicated DA in song evaluation, our

work directly shows that VTA inputs to Area X are active in a

manner consistent with song evaluation during natural behavior.

We did not find significant temporal relationships between DA

and song fluctuations consistent with a premotor signal as has

been observed in previous studies of DA (Barter et al., 2015; En-

gelhard et al., 2019). Our results provide direct evidence that DA

neurons in VTA respond to fluctuations in natural behavior in a

manner consistent with evaluation.

While, as a population, the non-error VTAother neuron activity

did not relate to song fluctuations in a manner consistent with a

PPE signal, many neurons exhibited correlated relationships to

song (Chen et al., 2021). These findings are consistent with previ-

ous studies in mammals, which found that both DA and non-DA

neurons in VTA contribute to an RPE calculation and that ele-

ments of the RPE signal are computed, in part, locally within

VTA (Cohen et al., 2012; Dobi et al., 2010; Tian et al., 2016;

Wood et al., 2017). Correlations with song variations in this pop-

ulation could represent components of the PPE calculation.

This project uses the structure of an experimentally grounded

characterization of individual neurons’ response to song-trig-

gered DAF to analyze the same neurons during natural behavior.

The connection to an existing experiment (Gadagkar et al., 2016)

as well as to a reinforcement learning framework (Sutton and

Barto, 1998) anchors our interpretations of natural behavior in a

constrained laboratory paradigm and theory. The unusually

high stereotypy of the natural behavior we consider, zebra finch

song, allows reasonable inferences to bemadeboth in the exper-

imental and natural context about the behavior of the bird and a

reasonable way to characterize and align a complex, natural

behavior. We found a parallel relationship, including a striking

temporal correspondence, between the VTAerror neuron activity

in experimental andnatural contexts that corroborates the exper-

imental finding that VTAerror neurons encode time step-specific

PPEs in song. Our analysis of natural song addresses the critique

that the DAF experimental paradigm is aversive rather than per-

turbative and thus qualitatively different from natural song evalu-

ation. A frequent debate in neuroscience is whether artificial

behavioral paradigms serve as true building blocks for under-

standing neural activity in complex, freely behaving contexts,

or whether they represent a different, overly simplified context
Cell Reports 38, 110574, March 29, 2022 7
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that will not extrapolate to natural behavior. This experimentally

guided study of natural behavior is a fruitful direction that permits

the control of experimental contexts and the complexity of natu-

ral contexts to interact and build upon one another.

Limitations of the study
Two important predictions from these PPE-like signals we find in

DAVTA neurons are that (1) future song renditionswill shift toward

song variations that correlate with the peak response in the DA

neurons, and that (2) this shift will be accompanied by a decrease

in the PPE peak response. We could not address these predic-

tions here because of the limited duration of our single recording

sessions. This will be an important direction for future work and

will help disambiguate the role of the VTA DA responses from

other possible relationships to song. We chose a pre-defined

set of song features (n = 8) that have been shown to represent bio-

logically relevant song variations in previous studies, because we

focused on single sessions with limited data. Future work could

apply more flexible, non-parametric dimensionality reduction

methods using more song renditions to better identify VTA’s rela-

tionship to song features that are most modulated by the bird at

different points in song (Goffinet et al., 2021; Kollmorgen et al.,

2020). Because of the size of our dataset and the subtlety of the

natural behavior, our study draws conclusions at the population

level. Populations of neurons were defined by their responses to

the DAF experiments reported in Gadagkar et al. (2016). If, in

future work, recordings of single cells could be carried out for

longer periods of time, this would increase the signal-to-noise ra-

tio and allow single-cell analyses of response significance. Finally,

although we have only focused on natural song in this analysis

and excluded distorted song regions, our dataset did not include

a control in which songs were not targeted for distortion. Future

work could apply our analysis techniques to recordings made

with no distortions to any parts of song.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Tyrosine Hydroxylase antibody Millipore Cat#AB152; RRID:AB_390204

Dextran, Alexa FluorTM 488 Invitrogen Cat#D22910

Experimental models: Organisms/strains

Zebra Finch (Taeniopygia guttata) Magnolia Bird Farm, Anaheim CA N/A

Software and algorithms

MATLAB MathWorks https://www.mathworks.com/products/matlab.html

Sound Analysis Pro Tchernichovski et al., 2000 http://soundanalysispro.com

Original analysis scripts This paper https://doi.org/10.6084/m9.figshare.15019380
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by Vikram Gadagkar (vikram.

gadagkar@columbia.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All data reported in this paper will be shared by the lead contact upon request.

d All original code has been deposited at Figshare and is publicly available as of the date of publication. The DOIs are listed in the

key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects were 19 adult male zebra finches, 74–300 days old, singing undirected song. Male zebra finches (Taeniopygia guttata)

used in this study were obtained from Magnolia Bird Farm in Anaheim, CA and kept on a 12h:12h light-dark cycle with ad-libitum

access to food. All experiments were conducted in accordance with NIH guidelines and were approved by the Cornell Institutional

Animal Care and Use Committee. Before implant surgeries, each bird was anesthetized with isoflurane. A bipolar stimulation elec-

trode was implanted into Area X at previously established coordinates (+5.6A, +1.5L relative to lambda and 2.65 ventral relative to

pial surface; head angle 20 degrees). Intraoperatively in each bird, antidromic methods were applied to locate the precise part of

VTA containing VTAx neurons. Next, custom made, plastic printed microdrives carrying an accelerometer, linear actuator, and

homemade electrode arrays (5 electrodes, 3–5 MOhms, microprobes.com) were implanted into the region of VTA containing

VTAx neurons.

METHOD DETAILS

Syllable-targeted distorted auditory feedback
Detailed description of all aspects of the distorted auditory feedback (DAF) experiments is described elsewhere (Gadagkar et al.,

2016). Descriptions of experimental details relevant to this study are presented here. Postoperative birdswere put in a sound isolation

chamber. The chamber was equipped with a microphone and two speakers which provided DAF. To carry out targeted DAF, the

microphone signal was analyzed every 2.5 ms using custom Labview software. Specific syllables were targeted either by detecting

a characteristic spectral feature in the previous syllable (using Butterworth band-pass filters) or by identifying an inter-onset interval

(onset time of previous syllable to onset time of target syllable) using the sound amplitude (this procedure has been previously

described (Ali et al., 2013; Hamaguchi et al., 2014; Tumer and Brainard, 2007)). A delay between 10-200 ms was applied between

the detected song interval and the target time.
e1 Cell Reports 38, 110574, March 29, 2022
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To help ensure that DAF would not be perceived as an aversive stimulus, the DAF sound was generated with the same amplitude

and spectral content as normal zebra finch song. For broadband DAF (n = 16 birds), DAF was a broadband sound, band passed at

1.5-8kHz in order to be in the same spectral range of zebra finch song (Andalman and Fee, 2009). For displaced syllable DAF (n = 10

birds), DAF was a segment of one of the bird’s own syllables displaced in the song. For both types of DAF, the amplitude was

measured with a decibel meter (CEM DT-85A) and kept at less than 90 dB, which is the average maximum loudness of zebra finch

song (Mandelblat-Cerf et al., 2014). This ensured that DAF was not an unusually loud sound for the bird; the distorted part of the song

was always softer than the loudest parts of the song.

Target time in the song was defined as the median DAF onset time across renditions of target syllables; jitter of the target time in

each bird was defined as the standard deviation of the distribution of DAF onset times relative to the target syllable onset. Syllable

truncations following DAF events were rare and were excluded from analysis.

Electrophysiology
Neural signals were band pass filtered (0.25-15 kHz) in homemade analog circuits and obtained at 40 kHz using customMatlab soft-

ware. Single neurons were identified as Area X-projecting (VTAx) by antidromic identification (stimulation intensities 50–400 mA,

200 ms on the bipolar stimulation electrode in Area X). All neurons identified as VTAx were additionally validated by antidromic

collision testing. Spike widths were calculated as the trough-to-peak interval in the mean spike waveform.

Histological verification of electrode location was performed after each experiment by making small, electrolytic lesions (30uA for

60 s) with the recording electrodes. Histological confirmation of reference lesions among dopamine neurons was then made by first

fixing the brains, then cutting the brains into 100 um thick sagittal sections and immuno-staining them with tyrosine hydroxylase.

Anatomical location was used to classify neurons as VTA, and antidromic identification and collision testing was used to classify

VTAx neurons. Note that antidromic testing can produce false negatives, so it is possible that non-antidromically identified VTAerror

neurons in fact project to Area X.

Spike sorting and analyzing responses to distorted auditory feedback
Offline spike sorting was performed using custom Matlab software. Firing rate histograms were constructed with 25 ms bins and

smoothed with a 3-bin moving average. To calculate whether error responses were significant (Figure 1D), spiking activity within

±1 second relative to target onset was binned in a 30 ms, moving window in 2 ms steps. Each bin after the target was tested against

the bins in the entire previous 1 second using a z-test (Mandelblat-Cerf et al., 2014). Response onset (latency) was defined as the first

bin for which the next 3 consecutive bins (6 ms) were significantly different from the previous 1 second of activity (z-test, p < 0.05);

response offset was defined as the first bin after response onset for which the next 7 consecutive bins (14 ms) did not differ from the

prior activity (p > 0.05, z-test); the response onset and offset were needed to set the maximum (undistorted) or minimum (distorted)

response after target time.

Parameterizing song
We used open-source MATLAB software, Sound Analysis Pro 2011 (SAP 2011), to assemble spectrograms and to define and extract

song features. Given the limited size of our data, we were unable to use an unsupervisedmethod to determine relevant song features.

We therefore used an existing feature set in SAP 2011, a customized software package for analysis of animal communication devel-

oped to study bird song (Tchernichovski et al., 2000) for our parameterization. These features have been previously used to connect

song variations to spiking activity or neuromodulator concentrations (Kao et al., 2005; Leblois et al., 2010; Woolley and Kao, 2014), to

study variation in song over development (Deregnaucourt et al., 2004; Lipkind and Tchernichovski, 2011; Ravbar et al., 2012) and to

drive adult learning in DAF paradigms (Andalman and Fee, 2009; Sober andBrainard, 2009; Tumer andBrainard, 2007). Therefore, we

can use this form of dimensionality reduction knowing that these features are behaviorally relevant to song variation in other contexts.

The song features usedwereWiener entropy, pitch, goodness of pitch, amplitude, amplitudemodulation (AM), frequencymodulation

(FM), mean frequency, and aperiodicity. These features create an eight-dimensional representation of song at each time-step. We

further applied a moving-average filter (35 ms) to smooth the feature signals in time and sampled the smoothed value every 5 ms

across song.

Aligning syllables across renditions
To compare song across renditions, syllables were classified using customMatlab code (Gadagkar et al., 2016). Groups of unique syl-

lables were labelled alphabetically as ‘a’, ‘b’, ‘c’ etc. depending on their order within a rendition. The number of unique syllables each

bird sings differs bird-to-bird from 3-7 syllables. We identified syllable onsets and offsets across renditions for every syllable set for

which there were at least 15 renditions of that syllable. We used an amplitude threshold chosen to match the amplitude variance of

that syllable. All alignmentswere then checked by eye.When alignmentwas ambiguous by eye, renditionswere excluded fromanalysis.

All syllable types (i.e. ‘a’ or ‘b’ etc.) were isolated and aligned across renditions by syllable onset times. Individual syllable types

have a stereotyped, consistent duration; however, there is slight variation of this duration from rendition-to-rendition. In order to

make sure that small differences in syllable durations were not misaligning local syllable features at the later portions of the syllable,

we linearly time-warped the feature wave forms of each syllable so that they all lasted the median duration of that syllable type (Kao

et al., 2008).
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Parameterizing and aligning spiking activity
Spike sorting was performed offline using customMATLAB software (Gadagkar et al., 2016). For each syllable, we included the spike

train ± 500 ms around the syllable onset. To align spiking activity to the song features, we first applied the same linear time-warping

map to the spike times that we used to align syllables for each rendition (Kao et al., 2008). In all cases, we applied this map to the time

window in which the syllable occurred. When possible, we built a piece-wise linear time warping map using syllable boundaries in

surrounding syllables. In the time windows where there was no song with which to generate a time warping map, we left the spike

train un-warped.

We binned spike counts within a sliding window (100 ms) across the 1000 ms length of spike train we considered for each syllable.

We selected this window based on the firing rate of the VTA-error neurons (mean firing rate = 13 ± 5 Hz).

Fitting spikes to song with a Gaussian process regression
The goal of our analysis is to quantify non-stationary spiking responses to a time-varying sensory signal, with the following charac-

teristics. First, if VTA neuron activity encodes prediction error responses to song fluctuations, these responses would be specific to

the time in song; an identical vocalization occurring at the beginning of the songmight elicit a very different response than at the mid-

dle. Second, the relevant dimensions of the signal space could vary throughout the song; thus, different parameterizations of the

song might provide better, low-dimensional representations of error-relevant song variation at different song time-steps. Third,

the form of a PPE-like tuning curve could also vary across the song.

Towards this goal, we used a regression approach to determine if spike counts are related to the variation in song (Aljadeff et al.,

2016). The relationship between spike counts and song is likely non-linear and related to a variable number of features depending on

the point in song. To address this, we used a non-parametric Gaussian process (GP) regression to fit the relationship between our

eight song features and spike counts within single time windows (Williams and Rasmussen, 2006).

There are multiple sources of model uncertainty in this task: it is unclear which and how many features to use at a given point in

song. Furthermore, the prediction of the model depends heavily on which features are used. To address this uncertainty, we used a

Bayesian model averaging approach to determine the predicted spike count wherein we integrated over all possible feature combi-

nations and weighted their predictions according to their posterior probability given the observed spike counts (Hoeting et al., 1998).

For each neuron, in every non-target (distorted or undistorted) syllable for which there were NR15 renditions, we sampled the

smoothed song features every 5ms across the syllable and sampled spike counts in 100mswindows every 10 ms across 1s of spike

train centered around syllable onset. We fit the multi-dimensional GP model across all song segment-spike bin pairs and generated

song-spike relationships at many time latencies. We additionally fit a GPmodel using each feature individually. For all of these fits we

computed the r2 value (coefficient of determination).

Construction of the Gaussian process regression model
Wemodeled the relationship between the set of N, z-scored song features on a single rendition i, xi, and the spike counts on that given

rendition, yi, in single time windows (e.g. the song feature values 20 ms after syllable onset and the spike count in a 100 ms window,

75ms after syllable onset). We used a non-parametric Gaussian process (GP) regression to fit the relationship between the eight song

features and spike counts across song and spike window pairs (Williams and Rasmussen, 2006). We used a Bayesian model aver-

aging approach to combine a weighted average of GP regressions using all subsets of song features into a single model prediction.

Note that the full GP model can result in worse predictions than individual features since the full model takes a weighted average

across all feature combinations.While themodel learns to shrink away unrelated features, themodel won’t completely shrink features

(exactly zero weights) with finite data due to remaining posterior uncertainty. If only one feature is truly related to the spiking activity,

this will impact the final weighted average. This extra stringency enables us to produce predictive fits across each fold in our cross-

validation procedure using a single model (the GP model), without requiring a complicated cross-validation procedure to coherently

select a single best feature model and correctly evaluate withheld performance. We therefore expect that occasionally a single

feature model will do better than the full-feature model in the limited data regime, but without knowing which features to select a priori

the single-feature fits may be overly optimistic due to the problem of multiple comparisons.

We selected a subset of features,M, for a single GP regression, where feature is indexed by n = 1, 2,.,N such thatM4 f1;2;.Ng;
Ms0, N = 8. The GP regression model for a single set of M is:

yi
��fM � N �fMðxi;MÞ;s2

�
(Equation 1)
fMð $ Þ � GP�m;u2kðMÞðx; x0Þ� (Equation 2)

where f is a function that relates song features to spike rate and k is the covariance function and defines how spike counts will corre-

late with one another in feature space. We used the commonly selected kernel function for k,

kðMÞðx; x0Þ = exp

�
� kxM�x0Mk2

2l2

�
: (Equation 3)
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u2 is the GP variance term and specifies how strongly the spike counts vary as a function of the song features. s2 is the variance

term that describes noise in the spike count (i.e. the variation of spike counts at a single point in song feature space). The length scale,

l, sets how close points must be in feature space to have correlated spike counts. In order to reduce computational complexity, we

set l = 0.5, for all model fits and z-scored individual song features at each time step.

Although we do not observe f directly, the GP framework allows us to compute the marginal likelihood of the data with respect to

the model parameters. The likelihood of all T renditions of spike count-song segment pairs is:

p
�
y1:T
��x1:T ;M; l; s2;u2;m

�
= N

�
½y1; y2;.; yT �T; ½m;m;.;m�T; u2KðMÞ + s2IT

�
; (Equation 4)
KðMÞ =

24 kðMÞðx1; x1Þ / kðMÞðx1; xT Þ
« 1 «

kðMÞðxT ; x1Þ / kðMÞðxT ; xT Þ

35; (Equation 5)

where IT is the identity matrix of dimension T.

The prediction mean-squared error for the GP model is:

MSE
ðGPÞ
loo =

1

T

XT
i = 1

ðyi � byiÞ2 (Equation 6)
byi = E
h
yi

���x=i; y=i; xi

i
(Equation 7)

where byi is the predicted spike count from the model for rendition i, and x=i and y=i are the song features and spike counts for all

renditions except for the ith rendition.

We determined the predicted spike count by applying a Bayesianmodel averaging approach. We integrated over all possible values

of M and then weighted their predictions based on their posterior probability given observed spike counts (Hoeting et al., 1998):

E
h
yi

���x=i; y=i; xi

i
=

X
M4f1;2;.Ng;Ms0

ZN
0

E
h
yi

���M; r; x=i; y=i; xi

i
p
�
M; r

���x=i; y=i

�
dr; (Equation 8)

where r = s2=u2 is the ratio of the GP variance to the observation noise. We then integrated over all possible values of M and

weighted their predictions according to their posterior probability given the observed spike counts.

E
h
yi

���m; M; r; x=i; y=i; xi

i
= K

ðMÞ
=i;i

T
�
K

ðMÞ
=i;=i + rIðT�1Þ

��1�
y=i �m

�
+m : (Equation 9)

In this way, we incorporated all possible combinations of song features into a single model prediction for each song-spike count

pair. We re-parameterized ðs2; u2Þ to ðj2; r2Þ where j2 is the total variance:

j2 = s2 +u2; (Equation 10)
s2 =
r

r + 1
j2; u2 =

j2

r + 1
(Equation 11)

And evaluated the posterior over model parameters using Bayes’ rule:

p
�
M; r

���x=i; y=i

�
=

p
�
y=i

��r;M; x=i

�
pðM; rÞP

M�4f1;2;.NgpðM�Þ RN

0
p
�
y=i

��r�;M�; x=i

�
pðM�; r�ÞdPðr�Þ

: (Equation 12)

We again applied Bayes’ rule to compute the likelihood term in Equation 12:

p
�
y=i

��r;M; x=i

�
=

p
�
y=i

��m;j2; r;M; x=i

�
pðm;j2Þ

p
�
m;j2

��r;m; x=i;j
2;M� : (Equation 13)

The likelihood term is computed as in Equation 4. We again used Bayes’ rule to compute the posterior over m and j2 :

p
�
m;j2

��r;m; x=i;j
2;M�

f p
�
y=i

��m;j2; r;M; x=i

�
p
�
m;j2

�
: (Equation 14)
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We placed a conjugate normal-inverse gamma prior over m and j2 :�
m; j2

� � N G�1ðm0; l0;a0;b0Þ (Equation 15)

where,

m0 = 0; l0 = 1; a0 = 10; b0 = a0 + 1: (Equation 16)

Thus, �
m; j2

��r;m;j2;M; x=i

� � N G�1
�
m
ðiÞ
post; l

ðiÞ
post;a

ðiÞ
post;b

ðiÞ
post

�
; (Equation 17)

where,

m
ðiÞ
post =

bðiÞ

aðiÞ
; (Equation 18)

l
ðiÞ
post = aðiÞ; (Equation 19)

a
ðiÞ
post = a0 +

T � 1

2
; (Equation 20)

b
ðiÞ
post =

1

2

 
cðiÞ �bðiÞ

aðiÞ

!
; (Equation 21)

aðiÞ = ðr + 1Þ1T
�
K

ðMÞ
=i;=i + rI

��1

1+ l0; (Equation 22)

bðiÞ = ðr + 1Þ1T
�
K

ðMÞ
=i;=i + rI

��1

y=i; (Equation 23)

cðiÞ = ðr + 1Þ1T
�
K

ðMÞ
=i;=i + rI

��1

y=i + 2b0; (Equation 24)

where 1 is a vector of ones. With this, we compute the terms in Equation 13.

The integral over Equation 12 is over one dimension and therefore tractable to compute. We selected a discrete distribution for the

prior P(r) to improve computation speed:

PðrÞ = Uniformðf3;4;5:67;9gÞ; (Equation 25)

such that the GP model could account for 25%, 20%, 15% or 10% of the total variance.

We set a truncated binomial prior over the number of included features that privileged models with fewer features (i.e., sparse

models):

pðMÞ= 1

1� ð1� pÞN
�

N
jMj

�
pjMjð1� pÞN�jMj

: (Equation 26)

We set p = 0.1 such that approximately 2/3 of the prior probability mass rests on single-feature models. We could integrate over a

sparse prior in our model, rather than a shrinkage prior such as the Lasso, because we considered only a small (N = 8) set of features

(Park and Casella, 2012). Using this normal inverse-gamma description of the posterior, we can then compute the prediction of yi,

given M and r:

E
h
yi

���M; r; x=i; y=i; xi

i
= E

h
E
h
yi

���m;M; r; x=i; y=i; xi

i���M; r; x=i; y=i; xi

i
; (Equation 27)

= K
ðMÞ
=i;i

T
�
K

ðMÞ
=i;=i + rIðT�1Þ

��1�
y=i �m

ðiÞ
post

�
+m

ðiÞ
post : (Equation 28)

We then insert Equation 28 and Equation 12 into Equation 8 to obtain the prediction of yi.

CONSTRUCTION OF THE LATENCY DISTRIBUTION

We defined the latency distribution as the set of all latencies between spike bins and song feature windows in which there was a pre-

dictive relationship (r2 > 0) within the GP model.
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CHARACTERIZING TUNING CURVES OF CELL RESPONSES

The GP model is flexible: it will fit any relationship between the independent and dependent variables and additionally is computa-

tionally efficient. However, the GPmodel provides no easily interpretable means of characterizing the shape of the fit. To characterize

the form of the spike-count to song relationships across many fits, we needed an automated method to categorize the shapes of the

tuning curves.

To do this, we applied a generalized linear model (GLM) with (q-GLM) and without (l-GLM) a quadratic transformation of the song

features (Park et al., 2013). A GLM is comprised of a stimulus filter, an invertible non-linearity (the link function) and a stochastic expo-

nential non-linearity, such as a Poisson process:

yjx � PoissðfðQðxÞÞÞ (Equation 29)

QðxÞ = ax2 +bx + c; (Equation 30)

where y is the spike count, x is the stimulus, f is the inverse link function and Q is a quadratic function of x with coefficients a, b, c. We

considered song features separately in this tuning curve analysis, so dim (x) = 1, and the quadratic coefficients were scalars (a, b, c).

We chose the link function to be an exponential and the noise process to be Poisson. We fit the quadratic coefficients by maximizing

the log-likelihood:

log PðY jX; a;b; cÞ =
XN
i = 1

	� expðQðxiÞÞ+ a � yixi2 + b � yixi + c� logðyi!Þ


; (Equation 31)

We maximized the log-likelihood numerically using conjugate gradient methods. The sign of the quadratic coefficient, a, of this

model specifies whether the data is better fit by an upwards-facing, quadratic basis in which the data is double-peaked, or a down-

wards-facing quadratic basis in which the data is single-peaked. We compared this model to a nested model fit where the quadratic

term is set to zero (l-GLM).

We compared the performance of the two models using the Akaike information criterion (AIC) (Akaike, 1974). The AIC metric is

defined as:

AIC= 2k � 2 lnbL; (Equation 32)

bL = argmaxa;b;c log PðY jX; a;b; cÞ; (Equation 33)

where bL is the maximum of the log-likelihood function for a given model and k is the number of estimated parameters in the model.

This metric incorporates both goodness of fit andmodel complexity. A lower AICmetric indicates better performance. Therefore, the

difference in the AICmetrics of twomodels denotes the relative success of onemodel over another, adjusting for differences inmodel

complexity (Akaike, 1974; Raftery, 1995). We can then ask, when the quadratic model (q-GLM) is a better fit than the linear model (l-

GLM), does the tuning curve form of spike counts to song features have a positive or negative curvature?

We compared the q-GLM and l-GLM models on all GP model fits with r2>0 for all song features which individually had predictive

fits within the multi-dimensional model. In this model comparison, DAIC = �2 is the lower bound of the metric and indicates that

the quadratic term of the q-GLM = 0. Thus, no improvement in fit was gained by the quadratic complexity. DAIC >0 indicates that

the q-GLM outperforms the l-GLM, taking into account both the goodness of fit and the added complexity of the extra model

parameter. We used this comparison to identify potential curvature in the spike-song feature relationship. Note, that when the

AIC metric is used in model selection, DAIC >10 is the standard threshold for significance. However, we are using this metric

not to make a model selection, but rather to identify instances of possible curvature in the data. Thus, we use DAIC >0 as our

threshold. In our data at DAIC >10, 90% of our fits have a negative, quadratic coefficient. However, because our data is noisy,

this accounts for only 2% of our data. We calculated the fraction of fits with the quadratic coefficient, a <0, as a function of

the DAIC metric:

DAIC h2klinear � 2 lnbL linear � 2kquad + 2 lnbLquad: (Equation 34)
QUANTIFICATION AND STATISTICAL ANALYSIS

Evaluating the Gaussian process model performance
To evaluate the GPmodel performance we estimated themean-squared prediction error for new observations using a leave-one-out

cross validation method as in (Vehtari et al., 2017):

MSE
ðGPÞ
loo =

1

T

XT
i = 1

ðyi � byiÞ2; (Equation 35)
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byi = E
h
yi

���x=i; y=i; xi

i
; (Equation 36)

where byi is the model prediction spike count for rendition ‘i’, and x=i and y=i are the song features and spike counts of all renditions

excluding the ith rendition. We then compared the GPmodel to a model with constant mean firing rate equal to the mean spike count

over all renditions excluding the ith rendition:

yðiÞ � N �a; t2�: (Equation 37)

The predictive mean-squared error of this model is:

MSE
ðnullÞ
loo =

1

T

XT
i = 1

�
yi � y=i

�2
(Equation 38)

where,

y=i =
1

T � 1

X
jsi

yj: (Equation 39)

The cross-validated r2 value is:

r2 = 1� MSE
ðGPÞ
loo

MSE
ðnullÞ
loo

: (Equation 40)

An r2 > 0 indicates that the model predicts new observations better than simply using the mean to predict new observations. The

maximum value the r2 can take is one—this indicates perfect model prediction and, in practice, is never reached. The r2 value is our

measure of model performance.

Bootstrapping to assess population-level significance
Evaluating the significance of the model predictions must be done on a population level for this analysis. We computed model fits to

hundreds of song segment-spike count pairs for each syllable. Simply by chance, some of these fits would generate a predictive r2> 0

value.

In addition, spike-song pairs are correlated, not just because spike counts and song segment windows overlap but also because of

possible underlying correlations in the song and spike fluctuations across the song. To address this, we randomized the relationship

between full spike trains and song renditions and then re-fit our model on the randomized, spike count-song segment pairs. By leav-

ing the timing of the song and spiking activity intact and only randomizing the relationship between them, we constructed a random-

ized population of fits for each cell-syllable pair, which retained whatever underlying temporal structure was present in the spike

trains and song (Tusher et al., 2001). We then repeated this process 100 times for the VTAerror cell population and 100 times for

the VTAother cell population.

From this distribution of coherently randomized cell sets, we computed bootstrap test, p value assessments of the r2 values of the

individual spike count-song segment model fits as well as on population measures of significance in the VTAerror and VTAother cell

populations independently. We assessed four population measures:

The number of predictive signals across the whole cell population

An r2>0 indicates that the model predicts the data better than an estimate based solely on the mean spike count, and we label this a

‘predictive signal’. We therefore computed the significance of the total number of r2>0 song segment-spike count fits within the PPE

latency window for both the VTAerror (p < 0.01) population and VTAother (p < 0.01) population of syllable-cell pairs with a one-sided

bootstrap test.

The distribution of the predictive signal across the cell population

We askedwhether a small number of cell-syllable pairs contained themajority of the positive r2 values or if the signal appeared across

multiple cell-syllable pairs in the population. To answer this, we first labeled each cell-syllable pair as ‘significant’ if the number of fits

with positive r2 values within the PPE latency window (0–150 ms) had a single-tailed p < 0.05. We then computed the single-tailed p

value for the number of significant cell-syllable pairs across each cell population (VTAerror population: one-sided bootstrap test: p <

0.01; VTAother population: one-sided bootstrap test: p < 0.01).

The magnitude of the peak in signal occurrence within the PPE latency window across the cell population

We computed latency distributions as the latencies of the full set of spike-count song feature pairs that resulted in GPmodel fits with

r2 > 0. We compared the variance within the latency distributions of the randomized populations to the magnitude of the peak we

found in the actual data. We computed the single-tailed p value for the maximum fluctuation of a latency distribution at any point

in the latency domain. Thus, we tested the significance not only of finding a peak of that size in the data at the PPE window but

of finding a peak of that size anywhere in the latency distribution. The VTAerror population latency distribution had a peak within

the expected PPE latency region (Figure 3C). This peak was 3.74 standard deviations from the mean. The variance in relation to
e7 Cell Reports 38, 110574, March 29, 2022
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the maximum variance in randomized latency distributions was significant (one-sided bootstrap test: p < 0.01). The time-bin of this

latency distribution was 25 ms. The VTAother population latency distribution had a peak 2.30 standard deviations from the mean (Fig-

ure 3D). This variance was not significant (one-sided bootstrap test: p = 0.21). The time-bin of this latency distribution was 25 ms.

The curvature of tuning curves we find via our GLM parameterization technique

We computed the two-sided bootstrap test p value of the fraction of tuning curves with a negative quadratic coefficient in the pop-

ulation data relative to the randomized populations (Figure 4E legend and main text).

Note that the goal of this significance strategy allows us to assess the VTAerror cell activity as a population, not the significance of

particular song segment-spike count pairs. In this framework, we do not require that a single feature or even song-spike pattern be

significant. More data are needed for this level of specificity.

Assessing natural song relationship to distorted auditory feedback
We have been unable to find any impact of the presence or absence of a distortion event in other portions of the song. As reported in

Gadagkar et al., (2016), there is no significant correlation between VTA spiking activity and the distortion event outside of a 0–150 ms

lag. We additionally looked for correlations between the distortion event and natural song fluctuations in the syllable immediately

following the distortion event (when the greatest impact might be expected) and found no significant correlations there either.

As an additional control, we re-performed the analyses presented in Figures 3 and 4 on only the sections of song which occurred

before the distorted auditory feedback across all error cells. During this portion of the behavior, it is unknown whether a distortion will

occur later in the song, and thus, no hidden correlations can exist between song fluctuations and distortion events. In this subset of

the data, we find a robust recapitulation of our original results: there is a highly significant peak in the latency distribution of predictive

relationships between spike counts and songwith the expected RPE timing latency (0–150ms) (p value < 0.01) and a highly significant

number of predictive relationships (p value < 0.01), repeating results in Figure 3. Additionally, there is a significant over-representation

of stabilizing tuning curve relationships between DA neurons and song fluctuations (p value < 0.02), again recapitulating the results of

Figure 4.
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Figure S1. Related to Figure 2. Spiking Responses to Song Fluctuations are Captured by a Subset of 

Available Features, which Varies Across Context  

Distributions of individual song feature weights in the full GP model for r2>0 and r2<=0 populations. In fits with 

r2>0 (predictive), the distribution was bimodal with an additional peak at around 0.5, implying that in predictive fits 
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fewer numbers of features captured most of the information. In overfit models (r2<=0) all features contributed more 

equally to the poor estimate. Also note that the distributions across features were quite similar; no one feature 

captured significantly more of the song variations.  
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Figure S2. Related to Figure 2. 1st Order Feature Contributions are Not Correlated while Feature 

Contributions to Full GP Model Show Pairwise Correlations at Low, But Not High Weights 

(A) Scatterplots of Relationships of only the 1st order feature contributions to the full GP model for individual fits 

with r2 > 0 within the PPE window. All plots: each point represents one model fit with an r2 > 0. Axes are the 1st 

order feature weights in full GP model; the red dot is the mean value. Pairs of features were selected to be 

representative of the full model set. These data showed that correlations between features are mainly higher order 

coupling effects.  

(B) Scatterplots of relationships of feature contributions to the full GP model for individual fits with r2 > 0 within the 

PPE window. All plots: each point represents one model fit with an r2 > 0. Axes are the total feature weight in full 

the GP model of indicated feature; the red dot is the mean value. Pairs of features were selected to be representative 

of the full model set. All pairs showed comparable correlations at low weights.  

 



 
 
Figure S3. Related to Figure 3. Coherent Shuffling of Entire Spike Trains Retains Underlying Correlation 

Structure and Permits a Population-level Significance Assessment  

(A) Schematic of spike train shuffling. Spike trains were randomized relative to the associated song. The 

randomized song-spike relationship was re-fit retaining possible underlying correlations in the spike train and song 

fluctuations. 
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(B) Panel replicated from Figure 3A.  

(C) r2 distributions for randomized and actual data. Left: r2 distributions for the shuffled and real data compared 

across all latencies. The real and shuffled distributions appeared quite similar. The number of r2 > 0 in the real data 

was not significantly different from what would be expected by chance. Right: the distribution of r2 values that fall 

within the PPE latency window compared to the randomized distribution from within this same latency range. This 

distribution was shifted away from the randomized distribution, with more, larger r2 > 0. This population had a 

significantly greater number of r2 > 0 than expected by chance (one-sided bootstrap test, p-value = 0.02). 

 



 

 

Figure S4. Related to Figure 4. Additional examples of single song feature model fits. Same format as in Figure 

4C. Example tuning curves obtained with the GP model, l-GLM, and q-GLM between single song features and spike 

counts for a selection of song-spike model fits. The r2 values for each example fit, top-to-bottom then left-to-right: 

0.1, 0.17, 0.15, 0.17, 0.13, 0.2, 0.23, 0.41. 
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