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In comparisons across Drosophila species, faster
pre-adult development is phenotypically corre-
lated with increased pre-adult competitive abil-
ity, suggesting that these two traits may also be
evolutionary correlates of one another. However,
correlations between traits within- and among-
species can differ, and in most cases it is the
within-species genetic correlations that are likely
to act as constraints on adaptive evolution. More-
over, laboratory studies on Drosophila melanoga-
ster have shown that the suite of traits that evolves
in populations subjected to selection for faster
development is the opposite of the traits that
evolve in populations selected for increased pre-
adult competitive ability. This observation led us
to propose that, despite having a higher carrying
capacity and a reduced minimum food require-
ment for completing development than controls,
D. melanogaster populations subjected to selec-
tion for faster development should have lower
competitive ability than controls owing to their
reduced larval feeding rates and urea tolerance.
Here, we describe results from pre-adult compe-
tition experiments that clearly show that the
faster developing populations are substantially
poorer competitors than controls when reared at
high density in competition with a marked mutant
strain. We briefly discuss these results in the
context of different formulations of density-
dependent selection theory.
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1. INTRODUCTION
Across Drosophila species, pre-adult development time
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is negatively correlated with competitive ability, with
faster developing species being superior competitors
(Krijger er al. 2001). In the wild, Drosophila larvae
typically occupy ephemeral habitats, such as rotting
fruit, which is thought to result in selection for rapid
development (Clarke ez al. 1961). Moreover, Drosophila
larvae also often face high densities and competition
for limited food in these ephemeral habitats (Atkinson
1979; Nunney 1990). These observations have
shaped a view that adaptation to larval crowding and
selection for faster development in Drosophila should
yield similar evolutionary outcomes (Partridge &
Fowler 1993; Borash, Teotonio et al. 2000; Krijger et
al. 2001). The pattern of correlations between traits
within and among species, however, is known to differ
for many sets of traits (Schnebel & Grossfield 1988;
Fischer er al. 2002; Sharmila Bharathi er al. 2003).
Tight causal links between traits that can influence
the trajectory of their joint evolution under a given
selection regime will be manifested as genetic corre-
lations among individuals within species. Conse-
quently, within-species correlations are more likely to
act as constraints shaping adaptive evolutionary
responses to selection than among-species corre-
lations that represent a pattern resulting from the
outcome of evolutionary changes within species.
Traits that are evolutionary correlates of one another
are, therefore, expected to exhibit within-species
genetic correlations between them.

Unfortunately, studies examining the within-
species relationship between development time and
competitive ability in Drosophila melanogaster have
yielded unclear results. Bakker (1969) assayed com-
petitive ability in populations selected for fast and
slow larval development, and found that the fast
developing population was a better competitor than
the slow developing one. However, the lack of
population level replication and the finding of no
difference in competitive ability between the fast
developing population and the ancestral control
population (Bakker 1969) suggest that the low com-
petitive ability of the slow developing population may
have been a consequence of drift and/or selection for
poor fitness. In a complementary study, Roper ez al.
(1996) observed that populations maintained at
higher larval densities evolved reduced development
time, compared with controls. However, the high
density used was actually rather moderate (150 larvae
per vial) and the high density populations did not
evolve greater competitive ability than controls
(Roper et al. 1996), making it difficult to infer any
correlation between competitive ability and develop-
ment time.

Correlated responses to selection for faster
development and for adaptation to larval crowding in
D. melanogaster have been extensively studied
(reviewed by Prasad & Joshi 2003). The evolution of
faster development is accompanied by a reduction in
body size and fractional lipid content, pre-adult
survivorship, larval feeding rate, larval foraging path
length, larval urea tolerance, pupation height and
minimum food requirement for pupation, when

© 2005 The Royal Society



92 M. Shakarad and others

Development time and competitive abiliry

(a) 30 eggs per vial

—
=]

(b) 300 eggs per vial

O
o >

<
to

pre-adult suvivorship

ay

FEJ JB

Ir

JB

Figure 1. Mean pre-adult survivorship in the fast (FE]) and control (JB) populations at two different densities, when reared
by themselves (monotypic cultures: open bars), and in competition with a marked strain (bitypic cultures: hatched bars).
Error bars are 95% confidence intervals based on the mean square (block X selection X culture X density) term in the ANOVA.

assayed at moderate larval densities. Faster develop-
ing populations also appear to have greater carrying
capacities than controls, possibly owing to their lower
minimum food requirement. Adaptation to larval
crowding, on the other hand, is accompanied by
increased fractional lipid content, larval feeding rate,
larval foraging path length, larval urea and ammonia
tolerance, pupation height and minimum food
requirement for pupation, whereas body size and pre-
adult survivorship do not appear to increase in
selected populations, at least at moderate assay
densities (reviewed by Prasad & Joshi 2003).

The lower minimum food requirement and higher
carrying capacity of faster developing populations is
consistent with a prediction of higher competitive
ability in these populations because these traits are
correlates of fitness (per capita population growth
rates) at high density, at least under the canonical
formulation of density-dependent selection
(MacArthur & Wilson 1967; Roughgarden 1971).
Nevertheless, given the importance of larval feeding
rate and urea/ammonia tolerance for competitive
ability in D. melanogaster (Mueller 1997), we earlier
predicted that our D. melanogaster populations would
evolve reduced pre-adult competitive ability as a
correlated response to selection for fast development,
despite having a lower minimum food requirement
and higher carrying capacity than their ancestral
controls (Joshi er al. 2001). Here, we report results
from an assay of pre-adult competitive ability in our
fast developing and control populations.

2. MATERIALS AND METHODS

(a) Experimental populations

This study used eight laboratory populations of D. melanogaster
previously described in detail by Prasad ez al. (2001). Four of these
populations (FEJ, 4; faster development, early reproduction, JB
derived, henceforth referred to as ‘fast’ populations) had been
subjected to selection for faster pre-adult development and early
reproduction for about 120 generations at the time of this study,
whereas the other four populations (JB;_4) were ancestral controls.
Each FEJ population was derived from one JB population and
therefore JB; and FE]J; were treated as random blocks in the
analysis. At this time, the development time difference between the
fast and control populations was about 42 h. The controls had been
maintained in the laboratory for over 400 generations on a 21 day
discrete generation cycle at large population size (n~1800) and
a moderate larval density of 60-80 larvae per vial containing about
6 ml of food medium. The fast populations were maintained in
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a manner similar to controls, except that only the first 20% of the
flies that eclosed in each vial were to form the breeding population,
and eggs were to be collected on the third day after eclosion. The
number of breeding adults in the fast populations was about 1400.

(b) Competition assay

Eggs collected from fast and control population flies that had
undergone one complete generation of common rearing without
selection on development time were placed in vials containing 2 ml
of food, at specific total densities (30 and 300 eggs per vial), either
by themselves (monotypic culture), or with an equal number of
eggs from a yellow body mutant strain used as a standard
competitor (bitypic culture: 15 or 150 eggs each of control or fast
and yellow body populations). For both monotypic and bitypic
competition assays, five vials per population were set up at each of
the two densities. Since the assays were staggered by block (FE],,
JB,), a separate set of five vials from the yellow body strain was run
with each block in the monotypic cultures. The number of adults
eclosing in each vial, and their body colour phenotypes, were
recorded and used to calculate pre-adult survival of individuals
from fast and control populations in each vial at the two densities
in both monotypic and bitypic cultures.

(c) Statistical analyses

All analyses were implemented using StaTisTICA™ for Windows
Release 5.0B (StatSoft Inc. 1995). Mean pre-adult survivorship in
fast and control populations at the two densities in both monotypic
and bitypic (having competition against yellow body flies) cultures
was subjected to mixed model analysis of variance (ANOVA) in
which block (ancestral lineage) was treated as a random factor
crossed with selection regime, density and type of culture (mono-
typic or bitypic). As our objective was to assess differences between
selection regimes, all analyses used population mean values as input
data. Untransformed and arcsine square root transformed data
yielded qualitatively similar results; hence, all results presented are
for untransformed data. Multiple comparisons were restricted to a
small subset decided upon a priori, and used Fisher’s least
significant difference test.

3. RESULTS

At a low density of 30 eggs per vial, mean pre-adult
survivorship of the fast populations was significantly
less than that of the controls, and mean survivorship
did not differ between monotypic and bitypic cultures
for either fast or control populations (figure 1).
Overall, mean pre-adult survivorship was lower in the
300 eggs per vial cultures, but the fast or control
populations were not differentially affected by the
increased density, as evidenced by the non-significant
selection X density interaction (table 1). At the higher
density of 300 eggs per vial, however, mean pre-adult
survivorship of the fast populations was significantly
lower (by 38%) in bitypic cultures than that in
monotypic cultures, whereas mean pre-adult
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Table 1. Mixed model ANOVA on mean pre-adult survivorship in the fast and control populations (selection) in monotypic

and bitypic cultures (culture) at densities of 30 and 300 eggs per vial.

(In this design, the main effect of block, and interactions involving block, cannot be tested for significance and have therefore

been omitted for brevity). MS, mean square.

effect d.f. MS F P

selection 1 0.465 452 90.09 0.0025
culture 1 0.006 942 2.35 0.2231
density 1 0.600 791 50.64 0.0057
selection X culture 1 0.042 876 80.75 0.0029
selection X density 1 0.005 671 0.44 0.5539
culture X density 1 0.000 055 0.01 0.9112
selection X culture X density 1 0.025 954 25.37 0.0151

survivorship of controls was significantly higher (by
19%) in bitypic rather than in monotypic cultures
(figure 1), a pattern reflected in the significant
selection X culture interaction in the ANOVA (table
1). A comparison with data from monotypic cultures
at 300 eggs per vial confirmed that the mean pre-
adult survivorship of yellow body flies in competition
with fast populations was higher than when reared in
monotypic culture by themselves, whereas when in
competition with the controls, the yellow body flies
had lower mean pre-adult survivorship than that in
monotypic culture (data not shown).

4. DISCUSSION

The results show that the fast populations are
substantially poorer competitors than the controls
(figure 1). Moreover, the reduced competitive ability
of the fast populations is not merely because their
pre-adult survivorship is generally lower than controls
at all densities. Were that the case, the survivorship of
the fast populations at high density would not have
been lower when cultured with yellow body individ-
uals (the bitypic assay) than when cultured alone (the
monotypic assay; figure 1). It was shown earlier that
the fast populations have a lower minimum food
requirement for pupation (Prasad er al. 2001) and a
higher carrying capacity (Joshi er al. 2001) than the
controls. These earlier observations, taken together
with the present results, contradict predictions from
canonical density-dependent selection theory
(MacArthur & Wilson 1967; Roughgarden 1971), as
well as the expectation that faster development
confers a competitive advantage (Bakker 1969;
Borash, Tedtonio er al. 2000; Krijger er al. 2001).
A closer examination of the reasons for this apparent
contradiction underscores the subtlety of the evol-
utionary process and the need to be very circumspect
in making broad generalizations about what kinds of
trait may be expected to evolve under particular
selection pressures.

Models of pure density-dependent selection (e.g.
Roughgarden 1971) predict that higher carrying
capacity is positively correlated with competitive
ability and fitness at high density. Increased efficiency,
in the sense of being able to sustain development on
smaller amounts of food, is also predicted to lead to
superior competitive ability (MacArthur & Wilson
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1967; Bell 1997). Increased efficiency will, of course,
also translate into a higher carrying capacity because
the development of a larger number of individuals
can be sustained on a given amount of food. These
predictions are artefacts of the logistic formulation of
density-dependent population growth rates, wherein
the only way a genotype can be fitter than others at
high density is for it to have a higher carrying
capacity, K (Joshi et al. 2001). On the other hand,
models incorporating arbitrary inter- and intra-geno-
typic competition coefficients (e.g. Asmussen 1983)
suggest that density-dependent selection need not
necessarily lead to increased carrying capacity or
greater efficiency of conversion of food to biomass.
We have previously shown that examining the results
of studies on adaptations to crowding and on selec-
tion for faster development in Drosophila in the light
of a broader conception of density-dependent selec-
tion that includes the notions of a-selection (selection
for increased competitive ability per se, as opposed to
selection for increased carrying capacity, K) and the
effectiveness and tolerance components of competitive
ability, leads to the prediction that faster developing
populations will have lower competitive ability than
controls, even though they possess some of the
attributes of a K-selected species, such as greater
efficiency, carrying capacity and population growth
rates at high density, compared with controls
(Joshi et al. 2001). The present results clearly support
this view.

Certainly, faster development may be expected to
translate into increased competitive ability, all else
being equal. However, all else is clearly not equal in
these Drosophila populations. Most importantly, the
fast populations have evolved lower larval feeding
rates and urea tolerance than controls, apparently as
part of a syndrome of reduced energy expenditure
(Joshi er al. 2001; Prasad er al. 2001). Higher larval
feeding rates are a strong correlate of competitive
ability in D. melanogaster, owing to the necessity of
ingesting sufficient food to sustain development
before it runs out in a crowded culture (Joshi &
Mueller 1996). In crowded cultures, levels of
nitrogenous waste (especially ammonia) also rapidly
build up to toxic levels (Borash er al. 1998). Conse-
quently, tolerance to nitrogenous wastes is also seen
to evolve in D. melanogaster populations maintained at
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high larval density (Borash er al. 1998). Thus, higher
larval feeding rates and a greater tolerance to ammo-
nia, which is genetically correlated with urea tolerance
(Borash, Pierce et al. 2000), appear to be character-
istic adaptations to larval crowding in D. melanogaster
(Prasad & Joshi 2003). The lower minimum food
requirement of the fast populations is evidently
insufficient to offset the reduction in competitive
ability owing to lower larval feeding rate and urea
tolerance, supporting the notion that, at least in
organisms showing primarily scramble competition,
the efficiency of food acquisition may be a far more
important determinant of competitive ability than the
efficiency of conversion of food to biomass (Joshi &
Mueller 1996). Overall, our results suggest that, the
among-species correlation between fast development
and competitive ability notwithstanding, microevolu-
tionary reductions in development time are unlikely
to result in the correlated evolution of enhanced
competitive ability in Drosophila species. This con-
clusion is strengthened by a recent observation that
significant reductions in larval feeding rate are appar-
ent even after just 10 generations of selection for
faster development (M. Shakarad, N. G. Prasad and
A. Joshi, unpublished data), suggesting that even
moderate reductions in development time may not
yield a benefit in terms of competitive ability. We
stress, however, that faster development leading to
reduced competitive ability as a correlated response
to selection does not necessarily imply that fast
development may not be a good indicator of competi-
tive ability in interspecific Drosophila comparisons.
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